
Architectural notations interoperability using the DUALLY framework

Ivano Malavolta
Dipartimento di Informatica, Università dell’Aquila,

Via Vetoio, 67100 L’Aquila,
[ivano.malavolta@di.univaq.it

Abstract

Nowadays different notations for architectural modeling
have been proposed, each one focussing on a specific appli-
cation domain, analysis type, or modeling environment. No
effective interoperability is possible to date.

DUALLY is an automated framework that aims to of-
fer an answer to this need allowing architectural languages
and tools interoperability. DUALLY has been imple-
mented as an Eclipse plugin and it is based on model trans-
formation techniques. This demonstration paper shows
DUALLY by applying its approach to a UML-based no-
tation and an outstanding ADL.

1. Introduction

A proliferation of architectural notations (i.e. various
ADLs and UML-based approaches) can be noticed today;
each notation may differ either conceptually, technologi-
cally and operationally from the others. Even the adoption
of UML for modeling architectures (e.g. [8, 6]) is biased
by different concerns: a number of UML profiles and ex-
tensions have been proposed for modeling different archi-
tectural concerns, increasing even more the proliferation of
architectural languages. Furthermore, there is not a unique
way to model a software architecture (as already claimed
in [3, 9]), testifying that it is also impractical to have a
“universal” notation. Moreover, very limited interoperabil-
ity possibilities among tools and notations exist because of
their inherent differences.

These considerations led us to propose DUALLY, a
framework to create interoperability among ADLs them-
selves as well as UML. Figure 1 conceptually shows the
infrastructure of DUALLY.

Let us suppose that an architectural model M1 (conform-
ing to its metamodel MM1) has been developed and that
arises the need to model the same architecture using a differ-
ent notation (whose metamodel is MM2). DUALLY pro-
vides the infrastructure to automatically obtain a model M2

in the target notation. This is possible because metamod-
eling experts can define semantic links between the meta-
models (i.e. MM1 and MM2) and then DUALLY automat-
ically instantiates these semantic links into model-to-model
transformations. Therefore architects will use the generated
transformations to interchange the notations to represent a
specific architecture.

The main advantages DUALLY exposes can be summa-
rized as follows: (i) DUALLY works at two abstraction
levels, providing a clear separation between model driven
experts (the technical stakeholder) and software architects
(the final users). The model transformation engine is com-
pletely hidden to software architects, making DUALLY ex-
tremely easy to use; (ii) DUALLY permits the transforma-
tion among both formal ADLs and UML model-based no-
tations; (iii) software architects can continue using familiar
architectural notations and tools, and can reuse existing ar-
chitectural models; (iv) DUALLY permits both languages
and tools interoperability; (v) the semantic links among two
architectural notations are defined once, and reused for each
model that will be made; (vi) DUALLY is implemented as
an Eclipse plug-in, so it is extensible and can easily cooper-
ate with other Eclipse plug-ins.

2 The DUALLY framework

DUALLY works at two abstraction levels: meta-
modeling (upper part of Figure 1), and modeling (lower part
of Figure 1).

At the meta-modeling level, model driven engineers pro-
vide a specification of the architectural language in terms of
its meta-model or UML profile. They then define a set of se-
mantic links so as to relate architectural concepts in MM1
with the corresponding elements in MM2. The semantic
links are captured by a weaving model. Weaving models
are particular kinds of models containing links among mod-
els, meta-models or UML profiles.

At the modeling level, software architects specify the
SA using their preferred ADL or UML-based notation.
DUALLY allows the automatic generation of model-to-



model transformations which enable the software architect
to automatically translate the M1 specification (written ac-
cording to MM1) into the corresponding M2 model (con-
forming to MM2) and viceversa. The generation of the
transformations consists in the execution of higher-order
transformations that take as input the semantic links be-
tween metamodels and produce the model-to-model trans-
formations. The higher order transformations are general,
thus the approach of DUALLY is metamodel independent,
allowing full interoperability between all the architectural
notations whose concepts may be defined through a meta-
model or a UML profile.

Figure 1. DUALLY Conceptual View

As it can be noticed in Figure 1, the weaving models (and
their corresponding generated transformations) relate MM1
to MM2 (as well as M1 to M2) passing through what we
refer to as A0. A0 is a minimal meta-model representing
a semantic core set of architectural elements (e.g. compo-
nents, connectors, behavior); it provides the infrastructure
upon which to construct semantic relations among differ-
ent ADLs. It is specific to software architectural domain
and it acts as a bridge among architectural languages. The
main benefit of using A0 is the implied star architecture in
which A0 is the center of the star while DUALLY’s trans-
formation engine is in charge of maintaining the transfor-
mation network. Due to space restrictions the why and how
of A0 cannot be discussed here and we refer to [7] and the
DUALLY website 1. The A0 metamodel can be extended if
there is the need to relate elements existing in both MM1
and MM2 which are not contemplated in A0.

DUALLY is developed in the context of the ATLAS
Model Management Architecture (AMMA) [2]. More
specifically, it is available as a plugin of the Eclipse plat-

1The home page of the DUALLY project is
http://dually.di.univaq.it while the source code can be found in
http://sourceforge.net/projects/dually, released under the GNU Gen-
eral Public License (GPL).

form that extends the ATLAS model weaver (AMW) [4].
Models and meta-models are integrated into the same
AMMA platform and, since AMMA is built on top of
Eclipse, they are automatically integrated with several mod-
eling technologies, such as Ecore and UML2. A high-level
overview of the technologies we used is represented in Fig-
ure 3. Both meta-models and models (also weaving models
via AMW’s specific editor) are expressed via XMI, this al-
lows users to define meta-models and models through any
editor that exports models in the XMI format and to import
it into DUALLY in a straightforward way. In particular,
UML profiles can be realized using any UML tool which
exports in UML2 [1], the EMF-based implementation of the
UML 2.0 meta-model for the Eclipse platform. The trans-
formation engine is based on ATL transformations [5], so
that it is fully compatible with the other components of the
AMMA platform used in the context of DUALLY.

References

[1] UML2 project Web site, http://www.eclipse.org/uml2/.

[2] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Model-
ing in the large and modeling in the small. In Lecture Notes
in Computer Science, Volume 3599, Pages 33 46, Aug 2005.

[3] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. An in-
frastructure for the rapid development of xml-based archi-
tecture description languages. In ICSE ’02: Proceedings of
the 24th International Conference on Software Engineering,
pages 266–276, New York, NY, USA, 2002. ACM Press.

[4] Didonet Del Fabro M., Bézivin J., Jouault F. and Breton E.
and Gueltas G. AMW: a generic model weaver. In Proc.
of 1re Journe sur l’Ingnierie Dirige par les Modles, Paris,
France. pp 105-114, 2005.

[5] F. Jouault and I. Kurtev. Transforming Models with ATL. In
Proceedings of the Model Transformations in Practice Work-
shop at MoDELS 2005, Jamaica, pp 128-138, 2006.

[6] P. Kruchten. Architectural Blueprints - The “4+1” View
Model of Software Architecture. IEEE Software, 12(6):42–
50, November 1995.

[7] I. Malavolta, H. Muccini, P. Pelliccione, and D. A. Tamburri.
Providing Architectural Languages and Tools Interoperabil-
ity through Model Transformation Technologies. Technical
report, TR 001-2009, University of L’Aquila, Computer Sci-
ence Department. Available at the DUALLY site, 2009.

[8] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E.
Robbins. Modeling Software Architectures in the Unified
Modeling Language. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 11(1), January 2002.

[9] N. Medvidovic and R. N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering,
26(1), January 2000.



Appendix: how the demonstration will be car-
ried out

The demonstration will be carried out using two projec-
tors to provide both a technical and a practical perspectives
in parallel. In the following, a description of the demonstra-
tion is given steps by step:

1. Software Architectures and Architecture Description
Languages
We will start the demonstration by giving a short in-
troduction to software architectures and the existent
languages and tools to describe software architectures.
A table summarizing existing approaches will be pre-
sented with the aim of providing a snapshot of the state
of the art and of the practice in this area.

2. Model transformation techniques and the AMMA plat-
form
As the audience might not be familiar with model
transformation techniques and with the AMMA plat-
form, their characteristics will be introduced and
shown in details.

3. The DUALLY framework
The parts that compose the DUALLY framework will
be conceptually shown on projector 1 and practically
shown on projector 2 (see Figure 2). By means of
projector 2 we will illustrate how the weaving model
and woven meta-models are represented within the
DUALLY’s editor.

4. Putting in practice DUALLY
In this presentation step we show how the conceptual
features of DUALLY are applied to a real case study,
explaining the typical usage session of our framework
from the point of view of a software architect. Fig-
ure 4 depicts the modeling technologies we used to de-
velop the case study. We selected a UML profile for
software architectures (see Figure 5 and [7]) and the
DARWIN/LTSA (see Figure 7 for the DARWIN/LTSA
metamodel) modeling and analysis environment. We
choose these notations (i) because DARWIN/LTSA is
one of the most outstanding ADLs in literature and (ii)
for the presentations sake since the two notations are
not so different and thus it is straightforward to under-
stand all the steps of the DUALLY process.

In order to show the transformations from UMLCC
to DARWIN/LTSA we selected the software architec-
ture of a multi-tier environment capable of maintain-
ing a fail-safe, client-server like communication within
a safe and secure environment such as a military ves-
sel: the Integrated Environment for Communication on

Ship (IECS)2 (see Figure 10 for the static description
of IECS-MS architecture using the UMLCC profile).
The case study’s specification comes from a project
developed within Selex Communications, a company
mainly operating in the naval communication domain.

Figure 9 and Figure 8 show the models produced by
the transformations generated by DUALLY; they con-
form to the A0 and the DARWIN/LTSA metamodels,
respectively. In these figures we included also the in-
terface of the programs we used to develop or import
the models to show that DUALLY provides also tools
interoperability.

5. DUALLYzation guidelines
In this step we aim to show to the audience how to
DUALLYze new ADLs. This will be shown by ex-
plaining step-by-step the DUALLYzation process.

6. Future work
We will carry out the future work on DUALLY in two
directions: (i) to use DUALLY in other contexts, dif-
ferent from software architectures and (ii) to extend the
tool itself. As we said above, the transformation engine
of DUALLY is metamodel independent, so we can use
it in other contexts. For example, we are evaluating to
use DUALLY with Klaper as pivot metamodel; Klaper
is a kernel interchange language with a focus on per-
formance and reliability attributes. The DUALLY tool
can be extended in different ways: (i) we are inves-
tigating on how to semi-automatically generate also
the weaving models, so that all the process of “dual-
lyzation” becomes automatic; (ii) if the target model is
modified DUALLY will provide the means by which
all the modifications made in the target model will be
automatically traced back to the source model; (iii) at
the moment is up to the metamodeling expert to create
weaving models that will produce valid model trans-
formations, we will provide a technique to verify the
quality of the generated transformations.

7. References
Finally, the web site of the DUALLY will be shown to
allow the audience to know where they can download
the framework and the case studies as well as to find
more details about the tool that is under construction
and the release dates.

Depending on the time availability, some of the afore-
mentioned items may be shortened or deleted.

2D. Colangelo, D. Compare, P. Inverardi, and P. Pelliccione. Reduc-
ing Software Architecture Models Complexity: A Slicing and Abstraction
Approach. In Formal Techniques for Networked and Distributed Systems
- FORTE 2006. pp.243258, 2006.



Figure 2. Graphical interface of DUALLY

Figure 3. Modeling technologies used in the context of DUALLY.



Figure 4. DUALLY instantiated

Figure 5. UMLCC profile.



Figure 6. A0 metamodel.



Figure 7. Darwin/LTSA metamodel.



Figure 8. Static description of IECS-MS architecture using the UMLCC profile.



Figure 9. Static description of IECS-MS architecture conforming to the A0 metamodel.



Figure 10. Static description of IECS-MS architecture conforming to Darwin/LTSA.


